A Pickands type estimator of the extreme value index
نویسنده
چکیده
− One of the main goals of extreme value analysis is to estimate the probability of rare events given a sample from an unknown distribution. The upper tail behavior of this distribution is described by the extreme value index. We present a new estimator of the extreme value index adapted to any domain of attraction. Its construction is similar to the one of Pickands’ estimator. Its weak consistency and its asymptotic distribution are established and a bias reduction method is proposed. Our estimator is compared with classical extreme value index estimators through a simulation study.
منابع مشابه
Generalized Pickands estimators for the extreme value index
The Pickands estimator for the extreme value index is generalized in a way that includes all of its previously known variants. A detailed study of the asymptotic behavior of the estimators in the family serves to determine its optimally performing members. These are given by simple, explicit formulas, have the same asymptotic variance as the maximum likelihood estimator in the generalized Paret...
متن کاملOptimal Rates of Convergence for Estimates of the Extreme Value Index
Hall and Welsh (1984) established the best attainable rate of convergence for estimates of a positive extreme value index under a certain second order condition implying that the distribution function of the maximum of n random variables converges at an algebraic rate to the pertaining extreme value distribution. As a rst generalization we obtain a surprisingly sharp bound on the estimation err...
متن کاملNonparametric estimation of an extreme-value copula in arbitrary dimensions
Inference on an extreme-value copula usually proceeds via its Pickands dependence function, which is a convex function on the unit simplex satisfying certain inequality constraints. In the setting of an iid random sample from a multivariate distribution with known margins and unknown extreme-value copula, an extension of the Capéraà–Fougères–Genest estimator was introduced by D. Zhang, M. T. We...
متن کاملKernel-type Estimators for the Extreme Value Index by P. Groeneboom,
A large part of the theory of extreme value index estimation is developed for positive extreme value indices. The best-known estimator of a positive extreme value index is probably the Hill estimator. This estimator belongs to the category of moment estimators, but can also be interpreted as a quasimaximum likelihood estimator. It has been generalized to a kernel-type estimator, but this kernel...
متن کاملA Location Invariant Moment - Type Estimator . I Udc
The moment’s estimator (Dekkers et al., 1989) has been used in extreme value theory to estimate the tail index, but it is not location invariant. The location invariant Hill-type estimator (Fraga Alves, 2001) is only suitable to estimate positive indices. In this paper, a new moment-type estimator is studied, which is location invariant. This new estimator is based on the original moment-type e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004